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Stochastic resonance of small-world networks
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Stochastic resonance~SR! of a coupled array of bistable oscillators with small-world connectivity is nu-
merically studied. At certain coupling strength, it is found that both temporal SR and spatial synchronization of
the oscillators can be considerably improved by increasing the order of randomness of the network due to the
long-range couplings. Moreover, our results show that a small fraction of long-range couplings is sufficient to
obtain great improvement in SR and synchronization.
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I. INTRODUCTION

Stochastic resonance~SR! is a somewhat counterintuitiv
phenomenon which has attracted increasing attention
the last two decades~for a review, see Ref.@1#!. In SR, noise
shows a surprising ability to optimize the response of a n
linear system to a subthreshold periodic signal. A canon
model for SR is an overdamped particle moving in a doub
well potential driven by a small periodic signal and an ad
tive noise. In this case, the output signal-to-noise ratio~SNR!
shows nonmonotonic behavior as a function of the in
noise strength. Since the original work of Benziet al. @2#, SR
has been shown to occur in a large variety of systems, f
biological and chemical to physical systems@3–11#.

Among recent studies, an interesting and important to
is addressed on SR in coupled oscillator systems@12–14#.
Lindner et al. found that the resonance behavior of an os
lator, measured by SNR, can be further enhanced by c
pling it into an array of oscillators, and they named th
phenomenon array enhanced stochastic resonance@12,13#.
For a coupled system, an additional parameter, the coup
strength, is introduced which strongly affects the SR beh
ior of the system. When the coupling is weak, the individu
oscillators behave almost independently. To the other
treme, if the coupling is very strong, the whole array mov
as a single element. However, at an optimal value of
coupling strength, the best SNR and spatiotemporal sync
nization are observed@12#.

A coupled system can be considered as a network
graph, where the vertices represent the elements of the
tem and the edges represent the interactions or coup
between them. The topology of these networks may in
ence the cooperative behavior of the systems. For examp
has been found that the output of an array of double-w
oscillators can be significantly improved when the oscillat
are connected in a two-dimensional square array instead
one-dimensional chain, and much lower coupling streng
are needed to obtain the best SNR. However, in the bul
the investigations on SR in coupled systems, the connect
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between the identical oscillators was regular, either loca
global.

In this paper, we study SR in the systems with both lo
~regular! and random connectivities, and investigate how
existence of randomness of the network connections aff
the behavior of the systems. In order to do this, we use
idea of the so-called ‘‘small-world’’ networks, recently intro
duced by Watts and Strogatz@15#. Such networks can be
obtained by randomly rewiring a fractionp of the connec-
tions of a regular lattice. Therefore they are indeed a kind
disordered networks which lie somewhere between the re
lar (p50) and the completely random (p51) networks, and
the parameterp stands for a measure of the order of rando
ness of the connectivity. It has been shown that some
networks, e.g., the neural network of the wormCaenorhab-
ditis elegans, are small-world networks@15#.

Here we consider the double-well oscillators coupled
small-world networks. We find that the SNR of the output
a network can be further improved by increasing the orde
randomnessp of the network. In fact, increasingp implies
that there are more ‘‘long-range’’ links in the network, whic
may lead to more efficient cooperations of the oscillato
Therefore the SNR, as well as the degree of synchronizat
can be enhanced. There are a number of parameters~such as
noise intensity, coupling strength, and the fraction of rand
connections! affecting the SR and synchronization behavio
and various optimization features are observed in vary
these parameters.

II. DESCRIPTION OF THE MODEL AND NUMERICAL
RESULTS

The networks used here are constructed following Wa
and Strogatz@15#. We first consider a one-dimensional reg
lar lattice with periodic boundary condition, composed ofN
vertices with each vertex connected to itsk nearest neighbors
@Fig. 1~a!#. So, there are1

2 Nk edges in the entire graph
Then, with probabilityp, each edge is rewired at rando
@Fig. 1~b!#. Specifically, we setN5100 andk54, and p
takes different values between 0 and 1. Note that in
rewiring process, the numbers of both vertices and ed
remain unchanged.

The model for this study is made of an array of coupl
©2001 The American Physical Society09-1
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double-well oscillators which are driven by a periodic for
and white noise. The couplings between the oscillators
considered to have the small-world topologies mention
above. The dynamics of each oscillator is described by

dxi5Fkxi2k8xi
31A sinvt1(

j
« i j ~xj2xi !Gdt

1DdWi~ t !, i 51,2, . . . ,N, ~1!

wherek andk8 are positive to ensure a double-well potenti
A andv are the amplitude and the frequency of the exter
periodic force which serves as the input signal,Wi(t) ( i
51,2, . . . ,N) are independent standard Wiener process
andD is the noise strength.« i j is the coupling between th
two oscillatorsi and j, and its value is determined by th
coupling pattern of the system. If these two oscillators
coupled to each other, we have« i j 5«, and otherwise,« i j
50. All the quantities in Eq.~1! are dimensionless. Through
out this work, we choose the parametersk52.1078, k8
51.4706, A51.3039, andf 5v/2p50.1162, which were
used in Ref.@12#, and take«, D, andp as our varying control
parameters to exam the response of the array system to
external signal and driving noise.

For each set of values ofp and«, we typically generate 50
different networks. A specific network defines a coupli
pattern of the system. We take the full Runge-Kutta we
method@16# for numerically integrating the stochastic diffe
ential equation~1!. The time series of the oscillators are r
corded over 32 periods of the external force. Then, the po
spectral density~PSD! is calculated and averaged over d
ferent elements of the array and the networks with differ
connectivities. It should be mentioned that because we
only interested ininterwell motion of the oscillators, the ef
fect of intrawell motion is filtered out by setting the output
be binary values of61 @12#.

The PSD has two components, i.e., the output signal a
background noise. The SNR, denoted byR, can be simply
defined as@17#

FIG. 1. ~a! A one-dimensional lattice with periodic bounda
conditions. Each vertex is connected to itsk neighbors, where in
this casek54. ~b! A small fraction of the links~in this case five of
them! are rewired to new sites chosen at random.
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R5
~signal power!

~noise power!
5

~ total power!2~noise power!

~noise power!
. ~2!

The SNR measures the temporal periodicity of the outpu
the array, i.e., the response of the oscillators to the perio
forcing. Figure 2~a! illustrates the SNR versus the inpu
noise strengthD for the cases of«53.98 andp50.01, 0.16,
0.40, and 1.0. The curves show typical SR character in
sense that there exists an optimal noise strength, at which
SNR is maximized. From the figure, one can also see that
SNR peak rises very rapidly as the randomness of the
work increases.

In Eq. ~1!, noise is applied locally, i.e., the noise is unco
related from site to site. Intuitively, this noise tends to ma
the array more spatially disordered. At the same time,
couplings between the elements help the whole array be
chronized. The competition between the noise and the c
plings determines the spatial organization of the system.

The degree of spatial synchronization can be quantified
the mean square deviation

s~ t !5^xi~ t !2&2^xi~ t !&25
1

N (
i 51

N

xi~ t !22F 1

N (
i 51

N

xi~ t !G2

.

~3!

s(t) is a periodic function of time whose period is half
forcing period.s(t) is a good quantity for measuring spati
synchronization of oscillators. For a fixedt, larges(t) rep-
resents large deviations between various oscillators,
small s(t) demonstrates strong collective motion and, co
sequently, better synchronization. Extremely,s(t)50 shows
complete synchronization. For measuring SNR we discre
the variable values to61. Now, s(t) is defined by the con-

FIG. 2. ~a! The signal-to-noise ratioR, defined in Eq.~2!; ~b! s̄
defined in Eq.~4! versus the input noise intensitiesD for several

values ofp. «53.98. The inset in~b! is s̄ versusD with «50.16
andp50.1. All quantities are dimensionless.
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tinuous variables, such provides additional information
measuring. We are not interested in the oscillation ofs(t),
and then the time average ofs(t),

s̄5
1

TE0

T

s~ t !dt, ~4!

will be used to quantitatively measure the synchronization
the array. Now the quantity SNR defined in Eq.~2! repre-
sents the order parameter for the order behavior of the
put, while s̄ defined in Eq.~4! denotes the spatial synchro
nization of the output. These two quantities will be t
central focus of our investigation. In Fig. 2~b! we plot s̄
versusD for different p and fixed«53.98. We also show a
curve for the case«50.16 andp50.1 in the inset of Fig.
2~b!, where minimums̄ ~the best synchronization! can be
clearly seen for certain optimal noise strength. However,«
and/orp are not very small, the couplings between the os
lators will be strong enough to pull the oscillators to t
same potential well even without the help of noise, and
this case, the best synchronization occurs at very low n
level. This feature is also observed in Fig. 2~b!.

In Fig. 3, we show the best SNR,Rs , as a function of the
coupling strength« and the randomness of the networkp. By
the best SNR we mean the largest SNR overD for each pair
of («,p). Note, both« andp are in log scale. It can be foun
that at certain values of« and largep, Rs has very large
values, where SR is greatly enhanced.

From Fig. 3, it is obvious thatRs is small for both too
small and too large«. And large Rs can be identified at
certain optimal coupling strength as shown in Fig. 4. T
explanation of the peaked curves in Fig. 4 has already b
given in Ref.@12#. In this paper, we are most interested in t
influence of parameterp on the SR behavior. Increasingp
means that more edges are rewired and thus more long-r
connections are introduced. In this case, the elements
come much closer to each other or, in other words, e

FIG. 3. The best SNR,Rs , as a function ofp and«. Both axes
are in log scale. All quantities are dimensionless.
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oscillator has more~not necessarily nearest! ‘‘neighbors.’’
This is indicated by the rapid decrease of the characteris
path length of the networkl with the increasing ofp @15#.
Here l is defined as the number of edges in the shortest p
between two vertices, averaged over all pairs of vertic
l (p) measures the typical separation between two vert
and hence serves as the characteristic length scale o
network. So, asp increases, the motion of an individual o
cillator can influence alarger number of other oscillators
more quickly. Therefore when the coupling strength is n
very large, the SR phenomenon can be considerably
hanced@see Fig. 5~a!#. On the other hand, if the couplings a
very strong, all oscillators behave almost as a single one,
increasingp may even help this trend. So, in this case, o
may expect that the disorder of the network may reduce
@see Fig. 5~b!#.

The SR behavior of Figs. 3–5 shows the temporal or
of the system output. For demonstrating the spatial synch

FIG. 4. The best SNR,Rs , versus« for several values ofp. All
quantities are dimensionless.

FIG. 5. The best SNR,Rs , as functions ofp. The coupling
stength is~a! «53.98 and~b! «5100. All quantities are dimension
less.
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nization features we shows̄ versusp in Figs. 6~a! and 6~b!
with the coupling strength«53.98 and 100, respectively. I
Fig. 6~a!, we takeD51.52, while in Fig. 6~b!, D57.0. For
other noise levels,s̄ has similar behavior@see Fig. 2~b!#.
From these figures, we observe thats̄ always decreases asp
increases. This feature is different from the dependence oRs
on p @Figs. 5~a! and 5~b!#.

Moreover,l drops very rapidly asp increases from 0@15#.
This implies that only a few long-range connections are s
ficient to considerably shorten the distance between the
ments in an array. For our choosing of parameters (N5100
andk54), only about one-fifth of the total edges needs to
rewired in order to obtain a characteristic-path length co

FIG. 6. The dependence ofs̄ on p. All quantities are dimension-
less.
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parable to that of a completely random network. As a res
the collective behaviors of the systems also show such sm
world property as shown in Figs. 5 and 6.

III. SUMMARY AND DISCUSSION

In conclusion, with proper coupling strength, the rando
connectivity of the networks may induce improvement
both SR and spatial synchronization due to the long-ra
couplings. However, in order to obtain a good result, only
few long-range couplings are needed, i.e., the connecti
has a small-world topology. It should be mentioned here t
a higher dimensional regular lattice can be considered a
lower dimensional lattice with additionalspecificlong-range
connections. These long-range connections can also re
the distance between two vertices. So, one can expect to
improvement in SR of higher dimensional lattices over th
lower dimensional counterparts. As evidenced, an increas
SNR of two-dimensional lattices compared with that of on
dimensional chains has been observed recently@14#. In addi-
tion, a negative role to the SR behavior played by increas
random connections at large coupling strength is obser
and intuitively understood.
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